Radioisotope and Radiation Applications EXERCISES Week 3b ### Problem 17: As the photoelectric effect is highly Z dependent, it is useful to define an effective atomic number \bar{Z} of a compound, (e.g.) as follows: $$\bar{Z} = (a_1 Z_1^{2.94} + a_2 Z_2^{2.94} + \ldots + a_n Z_n^{2.94})^{1/2.94}$$ where $a_1, a_2, \ldots a_n$ are the fractional contributions of each element to the total number of electrons in the mixture. Calculate the \bar{Z} of air, with the composition by weight given by: nitrogen 75.5%, oxygen 23.2%, and argon 1.3%, and using that the total number of electrons/g of air is 3.01×10^{23} . ## Problem 18: The percent depth dose P is often tabulated as a function of depth d and field size r and is usually measured at a standard SSD = f of 80 cm. In order to obtain P for a non-standard SSD, as an approximation, the Mayneord Factor F can be used: $$P(d, r, f_2) = P(d, r, f_1) * F$$ with F given as: $$F = \left(\frac{f_2 + d_m}{f_1 + d_m}\right)^2 \cdot \left(\frac{f_1 + d}{f_2 + d}\right)^2$$ The percent depth dose for (a 15 × 15 field size,) 10 cm depth, and 80 cm SSD is 58.4 (60 Co beam). Find the percent depth dose for the same field size and depth for a 100 cm SSD assuming $d_m = 0.5$ cm for 60 Co γ -rays. # Problem 19: A patient is to be treated with an orthovoltage beam having a half-value layer of 3 mm Cu. Supposing that the machine is calibrated in terms of exposure rate in air, find the time required to deliver 200 cGy (rad) at 5 cm depth, given the following data: exposure rate = 100 R/min at 50 cm, field size = $8 \times 8 \text{ cm}$, SSD = 50 cm, percent depth dose = 64.8, backscatter factor = 1.20. Simply use the factor rad/R = 0.95 to translate exposure rate in air to dose rate. (1R=1 Roentgen). ## Problem 20: A patient is to be treated with 60 Co radiation. Supposing that the machine is calibrated in air in terms of dose rate free space, find the treatment time to deliver 200 cGy (rad) at a depth of 8 cm, given the following data: dose rate free space = 150 cGy/min at 80 cm for a field size of 10×10 cm, SSD = 80 cm, percent depth dose = 64.1, and backscatter factor = 1.036. #### Problem 21: Determine the time required to deliver 200 cGy (rad) with a 60 Co γ -ray beam at the isocenter (a point of intersection of the collimator axis and the gantry axis of rotation), which is placed at a 10 cm depth in a patient. Assume SAD = 80 cm, and that for your field size at the isocenter the dose rate free space at the SAD for this field is 120 cGy/min, and the corresponding TAR = 0.681.