Radioisotope and Radiation Applications EXERCISES Week 2a

Problem 12: (Shielding of β -particles)

One curie of ³²P ($E_{\beta,max} = 1.71 \text{ MeV}$, $\overline{E}_{\beta} = 0.695 \text{ MeV}$) is dissolved in 50mL of water for an experiment. The solution is to be kept in a polyethylene bottle ($\rho = 0.93$).

- a) How thick should the wall of the bottle be to stop all β -particles emitted by $^{32}\mathrm{P}$?
- **b)** What should be the thickness of lead required to ensure that the dose equivalent rate due to bremsstrahlung photons is less than 1 mrem/h at 1m?

Problem 13: (Shielding of photon sources)

Determine the thickness of an iron shield able to reduce an exposure rate of 800mR/h from 1 MeV photons to:

- a) 200 mR/h
- **b)** 150 mR/h

(1 roentgen (R) is the old unit of radiation exposure and corresponds to $1R = 2.58 \cdot 10^{-4} C/kg$ of air.)

Problem 14: (Shielding of photon sources, buildup factor)

A fluence of $10^5 \gamma/cm^2$ of 1.5 MeV photons strikes a 2 cm thick piece of lead. What is the best estimate of the total energy that reaches a receptor beyond the lead shield?

Problem 15: (Shielding of photon sources, buildup factor)

Determine the thickness of an iron shield needed to reduce the exposure rate from a point source emitting $10^8 \gamma/\mathrm{s}$ of 1 MeV to 1 mR/h at a distance of 60 cm. (Use that the exposure rate in air for unscattered photons of energy E is given by Exposure(mR/h)= $0.0658\phi E(\mu_{en}/\rho)_{\rm air}$ where $\phi=\mathrm{flux}$ of photons/cm²s and $(\mu_{en}/\rho)_{\rm air}$ is the energy absorption coefficient for photons of energy E.)

Problem 16: (Shielding of neutron sources, buildup factor)

Estimate the dose equivalent rate 1m from an 239 Pu-Be source that emits $3 \cdot 10^7$ neutrons/s with an average energy of 4.5 MeV.

- a) unshielded
- b) shielded by 25cm of water

Fig. 7-9 Equivalent range of electrons in mg/cm² of low-Z absorbers.

 Table 8-1. Percent radiation yield of electrons of initial energy E on different absorbers.

	Absorber	(Z)				*
E (MeV)	Water	Air	Al (13)	Cu (29)	Sn (50)	Pb (82)
0.100	0.058	0.066	0.135	0.355	0.658	1.162
0.200	0.098	0.111	0.223	0.595	1.147	2.118
0.300	0.133	0.150	0.298	0.795	1.548	2.917
0.400	0.166	0.187	0.368	0.974	1.900	3.614
0.500	0.198	0.223	0.435	1.143	2.224	4.241
0.600	0.229	0.258	0.501	1.307	2.530	4.820
0.700	0.261	0.293	0.566	1.467	2.825	5.363
0.800	0.293	0.328	0.632	1.625	3.111	5.877
0.900	0.325	0.364	0.698	1.782	3.391	6.369
1.000	0.358	0.400	0.764	1.938	3.666	6.842
1.250	0.442	0.491	0.931	2.328	4.340	7.960
1.500	0.528	0.584	1.101	2.720	4.998	9.009
1.750	0.617	0.678	1.274	3.113	5.646	10.010
2.000	0.709	0.775	1.449	3.509	6.284	10.960
2.500	0.897	0.972	1.808	4.302	7.534	12.770
3.000	1.092	1.173	2.173	5.095	8.750	14.470

Table 8-3. Half-value layers (in cm) versus photon energy for various materials^[a].

Energy (MeV)	Lead (11.35 g/cm ³)	fron (7.874 g/cm³)	Aluminum (2.699 g/cm³)	Water (1.00 g/cm³)	Air (0.001205 g/cm³)	Stone concrete (2.30 g/cm³)
0.1	0.011	0.237	1.507	4.060	3.726×10^{3}	1.734
0.3	0.151	0.801	2.464	5.843	5.372×10^{3}	2.747
0.5	0.378	1.046	3.041	7.152	6.600×10^{3}	3.380
0.662	0.558	1.191	3.424	8.039	7.420×10^3	3.806
1.0	0.860	1.468	4.177	9.802	9.047×10^{3}	4.639
1.173	0.987	1.601	4.541	10.662	9.830×10^{3}	5.044
1.332	1.088	1.702	4.829	11.342	1.047×10^4	5.368
1.5	1.169	1.802	5.130	12.052	1.111×10^4	5.698
2.0	1.326	2.064	5.938	14.028	1.293 × 10 ⁴	6.612
2.5	1.381	2.271	6.644	15.822	1.459 × 10 ⁴	7.380
3.0	1.442	2.431	7.249	17.456	1.604 × 10 ⁴	8.141
3.5	1.447	2.567	7.813	19.038	1.747×10^4	8.828
1.0	1.455	2.657	8.270	20.382	1.868×10^{4}	9.366
5.0	1.429	2.798	9.059	22.871	2.094 × 10 ⁴	10.361
'.0	1.348	2.924	10.146	26.860	2.449×10^4	11.846
10.0	1.228	2.940	11.070	31.216	2.817 × 10 ⁴	13.227

a Calculated from attenuation coefficients listed in Table 8-2. Source: Data from Hubbell and Seltzer (1995).

Table 8-2. Photon attenuation (μ) , mass attenuation (μ/ρ) , and mass energy absorption (μ_{en}/ρ) coefficients for selected elements and compounds/mixtures (J. H. Hubbell and S. M. Seltzer).

		Dry air (sea = 0.001205			Water, li (ρ = 1.00			Alumir (ρ = 2.699		(p	Iron (ρ = 7.874 g/cm³)					
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)				
10	0.0062	5.120	4.742	5.329	5.329	4.944	70.795	26.23	25.43	1343.304	170.6	136.90				
15	0.0019	1.614	1.334	1.673	1.673	1.374	21.4705	7.955	7.487	449.4479	57.08	48.96				
20	0.0009	0.7779	0.5389	0.8096	0.8096	0.5503	9.2873	3.441	3.094	202.2043	25.68	22.60				
30	4.26×10^{-4}	0.3538	0.1537	0.3756	0.3756	0.1557	3.0445	1.128	0.8778	64.3778	8.176	7.251				
40	2.99×10^{-4}	0.2485	0.0683	0.2683	0.2683	0.0695	1.5344	0.5685	0.3601	28.5747	3.629	3.155				
50	2.51×10^{-4}	0.2080	0.0410	0.2269	0.2269	0.0422	0.9935	0.3681	0.1840	15.4173	1.958	1.638				
60	2.26×10^{-4}	0.1875	0.0304	0.2059	0.2059	0.0319	0.7498	0.2778	0.1099	9.4882	1.2050	0.9555				
70 ^[a]	2.10×10^{-4}	0.1744	0.0255	0.1948	0.1948	0.0289	0.6130	0.2271	0.0713	6.2318	0.7914	0.5836				
80	2.00×10^{-4}	0.1662	0.0241	0.1924	0.1924	0.0272	0.5447	0.2018	0.0551	4.6866	0.5952	0.4104				
100	1.86×10^{-4}	0.1541	0.0233	0.1707	0.1707	0.0255	0.4599	0.1704	0.0379	2.9268	0.3717	0.4104				
150	1.63×10^{-4}	0.1356	0.0250	0.1505	0.1505	0.0276	0.3719	0.1378	0.0283	1.5465	0.1964	0.2177				
200	1.49×10^{-4}	0.1233	0.0267	0.1370	0.1370	0.0297	0.3301	0.1223	0.0275	1.1496	0.1460	0.0796				
300	1.29×10^{-4}	0.1067	0.0287	0.1186	0.1186	0.0319	0.2812	0.1042	0.0282	0.8654	0.1099	0.0483				
400	1.15×10^{-4}	0.0955	0.0295	0.1061	0.1061	0.0328	0.2504	0.0928	0.0286	0.7402	0.0940	0.0304				
500	1.05×10^{-4}	0.0871	0.0297	0.0969	0.0969	0.0330	0.2279	0.0845	0.0287	0.6625	0.0940					
600	9.71 × 10 ⁻⁵	0.0806	0.0295	0.0896	0.0896	0.0328	0.2106	0.0780	0.0285	0.6066	0.0841	0.0291 0.0284				

ī		Ory air (sea = 0.001205		Ti.	Water, lic (ρ = 1.00 g	T (21)		Aluminι (ρ = 2.699 g		(P	Iron = 7.874 g/c	m³)
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)
662 ^[a]	9.34 × 10 ⁻⁵	0.0775	0.0293	0.0862	0.0862	0.0326	0.2024	0.0750	0.0283	0.5821	0.0739	0.0280
800	8.52×10^{-5}	0.0707	0.0288	0.0787	0.0787	0.0321	0.1846	0.0684	0.0278	0.5275	0.0670	0.0271
1000	7.66×10^{-5}	0.0636	0.0279	0.0707	0.0707	0.0310	0.1659	0.0615	0.0269	0.4720	0.0600	0.0260
1173 ^[a]	7.05×10^{-5}	0.0585	0.0271	0.0650	0.0650	0.0301	0.1526	0.0565	0.0261	0.4329	0.0550	0.0251
1250	6.86×10^{-5}	0.0569	0.0267	0.0632	0.0632	0.0297	0.1483	0.0550	0.0257	0.4213	0.0535	0.0247
1333 ^[a]	6.62×10^{-5}	0.0550	0.0263	0.0611	0.0611	0.0292	0.1435	0.0532	0.0253	0.4071	0.0517	0.0243
1500	6.24×10^{-5}	0.0518	0.0255	0.0575	0.0575	0.0283	0.1351	0.0501	0.0245	0.3845	0.0488	0.0236
2000	5.36×10^{-5}	0.0445	0.0235	0.0494	0.0494	0.0261	0.1167	0.0432	0.0227	0.3358	0.0427	0.0220
3000	4.32×10^{-5}	0.0358	0.0206	0.0397	0.0397	0.0228	0.0956	0.0354	0.0202	0.2851	0.0362	0.0204
4000	3.71×10^{-5}	0.0308	0.0187	0.0340	0.0340	0.0207	0.0838	0.0311	0.0188	0.2608	0.0331	0.0199
5000	3.31×10^{-5}	0.0275	0.0174	0.0303	0.0303	0.0192	0.0765	0.0284	0.0180	0.2477	0.0315	0.0198
6000	3.04×10^{-5}	0.0252	0.0165	0.0277	0.0277	0.0181	0.0717	0.0266	0.0174	0.2407	0.0306	0.0200
6129 ^[a]	3.01×10^{-5}	0.0250	0.0164	0.0274	0.0274	0.0180	0.0713	0.0264	0.0173	0.2403	0.0305	0.0200
7000 ^[a]	2.83×10^{-5}	0.0235	0.0159	0.0258	0.0258	0.01723	0.0683	0.0253	0.0170	0.2370	0.0301	0.0202
7115 ^[a]	2.82×10^{-5}	0.0234	0.0158	0.0256	0.0256	0.0172	0.0680	o.0252	0.0170	0.2368	0.0301	0.0203
10,000	2.46×10^{-5}	0.0205	0.0145	0.0222	0.0222	0.0157	0.0626	0.0232	0.0165	0.2357	0.0299	0.0211

a Coefficients for these energies were interpolated using polynomial regression.

		Copper $(\rho = 8.96 \text{ g/cm}^3)$			Lead (ρ = 11.35	E.		Polyethy (p = 0.93 g		Concrete, ordinary $(\rho = 2.3 \text{ g/cm}^3)$				
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ · (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)		
10	1934.464	215.9	148.4	1482.31	130.6	124.7	1.9418	2.088	1.781	47.04	20.45	19.37		
15	663.4880	74.05	57.88	1266.66	111.6	91.0	0.6930	0.7452	0.4834	14.61	6.351	5.855		
20	302.7584	33.79	27.88	980.1860	86.36	68.99	0.4013	0.4315	0.1936	6.454	2.806	2.462		
30	97.8432	10.92	9.349	344.1320	30.32	25.36	0.2517	0.2706	0.0593	2.208	0.9601	0.7157		
40	43.5635	4.862	4.163	162.9860	14.36	12.11	0.2116	0.2275	0.0320	1.163	0.5058	0.2995		
50	23.4125	2.613	2.192	91.2654	8.041	6.740	0.1938	0.2084	0.0244	0.7848	0.3412	0.1563		
60	14.2733	1.5930	1.2900	56.9884	5.0210	4.1490	0.1832	0.1970	0.0224	0.6118	0.2660	0.0955		
70 ^[a]	9.2401	1.0313	0.7933	35.0670	3.0896	2.6186	0.1754	0.1886	0.0221	0.5131	0.2231	0.0638		
80	6.8365	0.7630	0.5581	27.4557	2.4190	1.9160	0.1695	0.1823	0.0227	0.4632	0.2014	0.0505		
100	4.1073	0.4584	0.2949	62.9812	5.5490	1.9760	0.1599	0.1719	0.0242	0.3997	0.1738	0.0365		
150	1.9864	0.2217	0.1027	22.8589	2.0140	1.0560	0.1427	0.1534	0.0279	0.3303	0.1436	0.0290		
200	1.3969	0.1559	0.0578	11.3330	0.9985	0.5870	0.1304	0.1402	0.0303	0.2949	0.1282	0.0287		
300	1.0026	0.1119	0.0362	4.5752	0.4031	0.2455	0.1132	0.1217	0.0328	0.2523	0.1097	0.0297		
400	0.8434	0.0941	0.0312	2.6366	0.2323	0.1370	0.1013	0.1089	0.0337	0.2250	0.0978	0.0302		
500	0.7492	0.0836	0.0293	1.8319	0.1614	0.0913	0.0925	0.0995	0.0339	0.2050	0.0892	0.0303		
600	0.6832	0.0763	0.0283	1.4165	0.1248	0.0682	0.0855	0.0920	0.0338	0.1894	0.0824	0.0302		
662 ^[a]	0.6555	0.0732	0.0279	1.2419	0.1094	0.0587	0.0823	0.0885	0.0335	0.1822	0.0792	0.0299		

	v a	Copper (ρ = 8.96 g/	X1		Lead (ρ = 11.35 g			Polyethy (ρ = 0.93 g			oncrete, ordin (p = 2.3 g/cn	1000 T
Energy (keV)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	<i>μ ρ</i> (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)	μ (cm ⁻¹)	μ/ρ (cm²/g)	μ _{en} /ρ (cm²/g)
800	0.5918	0.0661	0.0268	1.0067	0.0887	0.0464	0.0751	0.0808	0.0330	0.1662	0.0723	0.0294
1000	0.5287	0.0590	0.0256	0.8061	0.0710	0.0365	0.0675	0.0726	0.0319	0.1494	0.0650	0.0284
1173 ^[a]	0.4840	0.0540	0.0246	0.7020	0.0619	0.0315	0.0621	0.0668	0.0310	0.1374	0.0598	0.0276
1250	0.4714	0.0526	0.0243	0.6669	0.0588	0.0299	0.0604	0.0650	0.0305	0.1336	0.0581	0.0272
1333 ^[a]	0.4553	0.0508	0.0239	0.6369	0.0561	0.0285	0.0584	0.0628	0.0300	0.1291	0.0561	0.0268
1500	0.4303	0.0480	0.0232	0.5927	0.0522	0.0264	0.0550	0.0591	0.0291	0.1216	0.0529	0.0260
2000	0.3768	0.0421	0.0216	0.5228	0.0461	0.0236	0.0471	0.0506	0.0268	0.1048	0.0456	0.0240
3000	0.3225	0.0360	0.0202	0.4806	0.0423	0.0232	0.0376	0.0405	0.0233	0.0851	0.0370	0.0212
4000	0.2973	0.0332	0.0199	0.4764	0.0420	0.0245	0.0320	0.0344	0.0209	0.0740	0.0322	0.0195
5000	0.2847	0.0318	0.0200	0.4849	0.0427	0.0260	0.0283	0.0305	0.0192	0.0669	0.0291	0.0184
6000	0.2785	0.0311	0.0203	0.4984	0.0439	0.0274	0.0257	0.0276	0.0179	0.0620	0.0270	0.0176
6129 ^[a]	0.2781	0.0310	0.0203	0.5002	0.0441	0.0276	0.0254	0.0273	0.0178	0.0616	0.0268	0.0175
7000 ^[a]	0.2757	0.0308	0.0206	0.5141	0.0453	0.0287	0.0236	0.0254	0.0169	0.0585	0.0254	0.0171
7115 ^[a]	0.2755	0.0307	0.0207	0.5161	0.0455	0.0289	0.0235	0.0252	0.0168	0.0582	0.0253	0.0170
10,000	0.2780	0.0310	0.0217	0.5643	0.0497	0.0318	0.0199	0.0215	0.0151	0.0524	0.0228	0.0162

a Coefficients for these energies were interpolated using polynomial regression.

Table 8-4. Exposure buildup factors for photons of energy E versus μx (for various absorbers).

									•	
	Energy (MeV)	ev)								
XI.	6	9.5	_	2	m	4	ئر	9		2
Al				50		r		·		
0.5	16.1	1.57	1.45	1.37	1.33	1.32	1.28	1.26	1.22	1.19
1.0	2.86	2.28	1.99	1.78	1.68	1.62	1.54	1.49	1.41	1.35
2.0	4.87	4.07	3.26	2.66	2.38	2.19	2.04	1.94	1.76	1.64
3.0	7.07	6.35	4.76	3.62	3.11	2.78	2.54	2.37	2.11	1.93
4.0	9.47	9.14	6.48	4.64	3.86	3.38	3.04	2.81	2.46	2.22
5.0	12.1	12.4	8.41	5.72	4.64	3.99	3.55	3.26	2.82	2.52
0.9	14.9	16.3	10.5	98.9	5.44	4.61	4.08	3.72	3.18	2.83
7.0	18.0	20.7	12.9	8.05	6.26	5.24	4.61	4.19	3.55	3.14
8.0	21,3	25.7	15.4	9.28	7.1	5.88	5.14	4.66	3.92	3.46
10.0	28.7	37.6	21.0	11.9	8.83	7.18	6.23	5.61	4.68	4.12
15.0	51.7	78.6	37.7	18.9	13.4	10.5	9.03	8.09	6.64	5.87
20.0	81.1	137	57.9	26.6	18.1	14.0	11.9	10.7	8.68	7.74
25.0	, 411	213	81.3	34.9	23.0	17.5	14.9	13.3	10.8	9.74
30.0	159	307	107	43.6	28.1	21.0	18.0	16.0	13.0	11.8
Fe		5 A	* ,	80					280	
0.5	1.26	1.48	1.41	1.35	1.32	1.3	1.27	1.25	1.22	1.19
1.0	1.4	1.99	1.85	1.71	1.64	1.57	1.51	1.47	1.39	1.33
2.0	1.61	3.12	2.85	2.49	2.28	2.12	1.97	1.87	1.71	1.59
3.0	1.78	4.44	4	3.34	2.96	2.68	2.46	2.3	2.04	1.86
4.0	1.94	5.96	5.3	4.25	3.68	3.29	2.98	2.76	2.41	2.16
5.0	2.07	7.68	6.74	5.22	4.45	3.93	3.53	3.25	2.81	2.5
6.0	2.2	9.58	8.31	6.25	5.25	4.6	4.11	3.78	3.24	2.87
7.0	2.31	11.7	10.0	7.33	60.9	5.31	4.73	4.33	3.71	3.27
8.0	2.41	14.0	11.8	8.45	96.9	6.05	5.38	4.92	4.2	3.71
10.0	2.61	19.1	15.8	10.8	8.8	7.6	6.75	6.18	5.3	4.69
15.0	3.01	35.1	27.5	17.4	13.8	11.9	10.7	9.85	8.64	7.88

Table 8-4. Continued.

	Energy (MeV)	MeV)									
Χď	0.1	0.5	1	7	m	4	20	g	∞	2	
20.0	3.33	55.4	41.3	24.6	19.4	16.8	15.2	14.2	12.9	12.3	
25.0	3.61	79.9	57.0	32.5	25.4	22.1	20.3	19.3	18.2	18.1	
30.0	3.86	108	74.5	40.9	31.7	27.9	25.9	25.1	24.5	25.7	
Sn				ÿ							
0.5	1.35	1.32	1.33	1.27	1.29	1.28	1.31	1.31	1.33	1.31	
1.0	1.38	1.61	1.69	1.57	1.56	1.51	1.55	1.54	1.6	1.57	
2.0	1.41	2.15	2.4	2.17	2.07	1.96	1.97	1.94	2.04	2.02	
3.0	1.43	2.68	3.14	2.82	2.64	2.45	2.43	2.38	2.51	2.61	
4.0	1.45	3.16	3.86	3.51	3,25	3.0	2.54	2.87	3.05	3.27	
2.0	1.47	3.63	4.6	4.23	3,92	3.6	3.52	3.43	3.69	4.09	
0.9	1.49	4.14	5.43	5.03	4.68	4.29	4.19	4.09	4.45	5.07	
7.0	1.5	4.64	6.27	5.87	5.48	5.04	4.93	4.83	5.34	6.26	
8.0	1.52	5.13	7.11	6.74	6.32	5.84	5.74	5.65	6.36	69.2	
10.0	1.54	6.13	8.88	8.61	8.19	7.65	7.63	7.63	8.94	11.5	
15.0	1.58	8.74	13.8	14.0	13.8	13.5	14.1	14.9	19.7	29.6	0.5
20.0	1.61	11.4	19.1	20.1	20.5	21.1	23.5	26.4	40.7	72.1	20
25.0	1.64	14.0	24.5	26.9	28.1	30.6	36.2	43.9	79.7	168	
30.0	1.66	16.5	30.0	34.2	36.6	42.1	53.0	69.3	150	377	
Pb											
0.5	1.51	1.14	1.2	1.21	1.23	1.21	1.25	1.26	1.3	1.28	
1.0	2.04	1.24	1.38	1.4	1.4	1.36	1.41	1.42	1.51	1.51	
2.0	3.39	1.39	1.68	1.76	1.73	1.67	1.71	1.73	1.9	2.01	
3.0	5.6	1.52	1.95	2.14	2.1	2.02	2.05	2.08	2.36	2.63	
4.0	9.59	1.62	2.19	2.52	2.5	2.4	2.44	2.49	2.91	3.42	
2.0	17.0	1.71	2.43	2.91	2.93	2.87	2.88	2.96	3.59	4.45	
0.9	30.6	1.8	2.66	3.32	3.4	3.28	3.38	3.51	4.41	5.73	
7.0	54.9	1.88	2.89	3.74	3.89	3.79	3.93	4.13	5.39	7.37	
8.0	94.7	1.95	3.1	4.17	4.41	4.35	4.56	4.84	6.58	9.44	

	7	8.65	9.97	12.7	20.1	28	36.5	45.2		1.38	1.83	2.81	3.86	4.96	6.13	7.35	8.61	9.92	12.6	20	27.9	36.2	5		1.37	1.77	2.65	3.6	4.61
	-	15.8	19.0	26.1	47.7	74.0	104	139		1.47	2.08	3.6	5.46	7.6	10.0	12.7	15.6	18.8	25.8	47.0	72.8	103	136		1.45	1.98	3.24	4.72	6.45
MeV)	0.5	32.7	41.5	62.9	139	252	403	594		1.6	2.44	4.84	8.21	12.6	17.9	24.2	31.6	40.1	9.09	134	241	385	267		1.57	2.27	4.03	6.26	8.97
Energy (MeV)	.0.1	137	187	321	938	2170	4360	7970		2:35	4.46	11.4	22.5	38.4	59.9	87.8	123	166	282	800	1810	3570	6430	بە	1.89	2.78	4.63	6.63	8.8
	ğ	7.0	8.0	10.0	15.0	20.0	25.0	30.0	Air	0.5	1.0	2.0	3.0	4.0	5.0	0.9	7.0	8.0	10.0	15.0	20.0	25.0	30.0	Concrete	0.5	1.0	2.0	3.0	4.0
																		76											g.
	01	15.4	50.8	161	495	1470		1.27	1.49	1.97	2.56	3.31	4.26	5.43	6.9	8.73	13.9	43.4	131	382	1100		1.2	1.37	1.68	1.97	2.25	2.53	2.8
a.	80	9.73	25.1	62.0	148	344		1.28	1.48	1.85	2.27	2.78	3.39	4.11	4.96	5.97	8.61	20.8	48.6	110	244		1.23	1.43	1.8	2.15	2.46	2.82	3.15
	9	6.61	13.7	26.6	49.6	88.9		1.24	1.38	1,66	1.98	2.33	2.74	3,19	3.71	4.28	5.68	11.0	20.1	35.4	60.4		1.27	1.51	1.97	2.41	2.84	3.27	3.7
	25	6.03	11.4	19.9	32.9	52.2		1.23	1.37	1.64	1.94	2.27	2.63	3.04	3.49	3.99	5.14	9.1	15.1	23.7	36.0		1.28	1.56	2.08	2.58	3.08	3.58	4.08
	4	5.61	9.73	15.4	23.0	32.6		1.19	1.32	1.6	1.89	2.21	2.55	2.93	3.33	3.76	4.72	7.72	11.6	16.5	22.5		1.31	1.63	2.24	2.85	3.46	4.07	4.68
	E	5.56	8.91	12.9	17.5	22.5		1.2	1.35	1.64	1.95	2.28	2.62	2.99	3.38	3.78	4.64	7.06	8.6	12.8	16.0		1.34	1.71	2.46	3.23	4	4.8	5.61
	2	5.07	7.44	86.6	12.6	15.4		1.19	1.35	1.65	1.95	2.25	2.56	2.88	3.19	3.51	4.17	5.84	7.54	9.27	11.0		1.38	1.83	2.81	3.87	4.98	6.15	7.38
	-	3.51	4.45	5.27	5.98	6.64		1.17	1.31	1.53	1.73	1.9	2.07	2.23	2.38	2.52	2.78	3.35	3.82	4.23	4.59	21	1.47	2.08	3.62	5.5	7.68	10.1	12.8
\ \(\)	0.5	2.1	2.39	2.64	2.85	3.02		1.11	1.19	1.3	1.39	1.45	1.52	1.58	1.63	1.68	1.77	1.96	2.11	2.23	2.33		1.6	2.44	4.88	8.35	12.8	18.4	25.0
Energy (MeV)	1.0	294	2800	1.33×10^5	3.34×10^{6}	8.87×10^7		1.04	1.06	1.08	1.1	111	1.12	1.13	1.14	1.14	1.16	1.18	1.2	1.22	1.23		2.37	4.55	11.8	23.8	41.3	65.2	2.96
a	Ř	10.0	15.0	20.0	25.0	30.0	D	0.5	1.0	2.0	3.0	4.0	2.0	0.9	7.0	8.0	10.0	15.0	20.0	25.0	30.0	H20	0.5	1.0	2.0	3.0	4.0	5.0	0.0

Table 8-4. Continued.

3.07

5.07

2

3.86 5.14 6.38 7.59 8.78

5.37

6.05

5.92

7.27

7.41 9.42 11.4

8.49

10.3

13.3 17.8 22.4

7.49 8.96 10.4

13.3

15.7

13.3

16.5

1.37 1.68 1.97 2.26 2.54 2.82

2.15

2.6

2.85

2.5

3.28

3.11

3.46

1.8

1.97

2.25

2.84 3.17 3.51 3.84

3.61 4.12 5.12 6.13 8.63

4.69

4.79

1.2

1.23

1.27

1.29

1.31

1.71 1.71 2.46 3.22

1.57

1.63

3.37 3.92 5.25 6.55

6.08

7.64 9.17 10.7

11.1

13.6

16.7

22.5

19.9

4.49

5.42 7.51 9.58 11.6

7.19 10.3 13.5.

13.4

3.1

5.31

6.43

5.6

5.94

1.19 1.35 1.64 1.93 2.22

1.22

1.26 1.49 1.93 2.37 2.8

1.27

1.31

, 1.33

1.53 2.04 2.53

1.76

2.18

2.38

2.77

2.11

3.03

3.84

9.11

Table 14-4. Fluence rates for monoenergetic neutrons that correspond to a dose equivalent rate of 1 mrem/h.

Neutron energy (eV)	Fluence rate (n	/cm² s) for 1 mrem
	10 CFR 20 ^[a]	NCRP-112 ^[b]
0.025 (thermal)	272	112
0.1	272	112
1	224	112
10	224	112
10 ²	232	116
10 ³	272	112
104	280	120
105	46.0	16.0
5 × 10 ⁵	10.8	6.40
106	7.6	3.88
5 × 10 ⁶	6.4	3.88
07	6.8	3.20
$.4 \times 10^7$	4.8	2.72
× 10 ⁷	4.4	-
08	5.6	18 18

a Adapted from Title 10, Code of Federal Regulations, Part 20 (1993) by the US Nuclear Regulatory Commission (the rates incorporate neutron quality factors of 2.0 for thermal and low-energy neutrons and 2.5–11 for higher energy neutrons).

b These fluence rates are based on NCRP Report 112 (1987) which recommends increasing Q for neutrons by a factor of 2.5 for thermal neutrons and 2.0 for all other energies.

Table 14-5. Neutron removal coefficients $\Sigma_{\rm nr}$ for fission neutrons in several common materials surrounded by sufficient hydrogenous material to absorb neutrons that are degraded in energy due to scattering interactions.

Medium	$\Sigma_{\rm nr}$ (cm $^{-1}$)
Sodium	0.032
Graphite	0.078
Carbon	0.084
Concrete (6% H ₂ O)	0.089
D ₂ O	0.092
Zirconium	0.101
H ₂ O	0.103
Paraffin	0.106
Polyethylene	0.111
Lead	0.118
Beryllium	0.132
Iron	0.156
Copper	0.167
Uranium	0.182
Tungsten	0.212

Source: Report TID-25951, 1973.