

Radioisotope and Radiation Applications (FS2013)

Origin of the Nuclides (Week 1c, Seminar)

Pavel Frajtag

17.09, 2013

Origin of the Nuclides: Table of Contents

- Introduction: Nuclear Astrophysics
- Big-Bang and Big-Bang Nucleosynthesis
- ☐ Stellar Evolution and Burning Phases
 - Hertzsprung-Russell Diagram
 - Hydrogen Burning
 - Helium Burning and Higher Burning Stages
- Death of Stars: White Dwarfs and Supernovas
 - s-process
 - r-process
 - other processes (p-process, rp-process, v-nucleosynthesis, vp-process)
- Radionuclides in the Environment
- Summary

(Nuclear) Astrophysics

- ☐ Is the offspring of the marriage of (nuclear) physics and astronomy.
- Topics in Astrophysics are: Astronomy (radio, infrared, optical, ultraviolet, X-ray, γ-ray), stellar dynamics and evolution, galaxy formation, large-scale structure of matter in the universe, origin of cosmic rays, black holes, gravitational waves (general relativity), physical cosmology, astroparticle physics.
- Nuclear Astrophysics strives to answer the following questions:
 - How did the chemical elements that we have on Earth come into existence?
 - •Where in space were they formed?
 - How does stellar energy production work (How does the sun shine?)
- ☐ Diagram shows the abundances of the elements in the solar system (mass-%).

Astrophysics: Explain abundances of the elements and isotope variations

Abundance of the elements on the surface of the earth (lithosphere, hydrosphere and atmosphere).

Big Bang

- The universe is thought to have begun with a cataclysmic explosion. Pieces of evidence for this "Big Bang" are:
 - Astronomical observations show that the universe is isotropically expanding (red shift).
 - There is a 2.7 K universal microwave background radiation, the thermal remnant of the Big Bang EM-radiation.

Big Bang Nucleosynthesis (BBN)

- After about 200 s and at a temperature of about 10^9 K primordial nucleosynthesis (or BBN) began with the reaction: $n + p \rightarrow d + \gamma$
- At this time the reverse reaction $d + \gamma \rightarrow n + p$ declined, such that the deuteron lived long enough to allow for the reactions:
 - p + d \rightarrow ³He + γ
 - $n + d \rightarrow {}^{3}H + \gamma$
- As 3 He and 3 H are more strongly bound, further reactions leading to the very stable α –particle can occur:
 - ${}^{3}\text{H} + \text{p} \rightarrow {}^{4}\text{He} + \gamma$
 - ${}^{3}\text{He} + n \rightarrow {}^{4}\text{He} + \gamma$
 - ${}^{3}\text{H} + \text{d} \rightarrow {}^{4}\text{He} + \text{n}$
 - d + d \rightarrow ⁴He + γ
- As stable nuclei with A=5 and A=8 do NOT exist, further (A=1 step) reactions cannot take place. Just some ⁷Li is produced by:
 - ${}^{4}\text{He} + {}^{3}\text{H} \rightarrow {}^{7}\text{Li} + \gamma$
 - ${}^{4}\text{He} + {}^{3}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$ and ${}^{7}\text{Be} + e^{-} \rightarrow {}^{7}\text{Li} + v_{e}$
- □ ⁷Li is very weakly bound and rapidly destroyed. Thus the synthesis of larger nuclei was blocked. Further nucleosynthesis goes on in stars.

Stellar Evolution: Hertzsprung-Russell diagram

☐ A well defined correlation between luminosity and surface temperature of stars was observed by Hertzsprung and Russell. Most stars (like our sun) fall in a narrow band called the main sequence.

Hydrogen Burning

☐ Three chains of nuclear reactions that constitute hydrogen burning and convert protons into ⁴He. The rate-limiting step in all reactions is the first reaction to create the deuterium. (CNO-cycle not discussed.)

Helium Burning and Higher Burning Stages

- When the hydrogen fuel of a star is exhausted a further gravitational collapse will occur leading to temperatures up to 1-2 x 10^8 K. In this red giant helium burning will start by the triple- α -process:
 - 3 ⁴He \rightarrow ¹²C + γ (through a resonance in ¹²C)
- ☐ After some amount of ¹²C has been formed the following reactions can take place:
 - ${}^{4}\text{He} + {}^{12}\text{C} \rightarrow {}^{16}\text{O} + \gamma$
 - ${}^{4}\text{He} + {}^{16}\text{O} \rightarrow {}^{20}\text{Ne} + \gamma$
- ☐ And nucleosynthesis may continue with neon-burning:
 - ${}^{4}\text{He} + {}^{20}\text{Ne} \rightarrow {}^{24}\text{Mg} + \gamma$
- ... and carbon and oxygen burning:
 - ${}^{12}\text{C} + {}^{12}\text{C} \rightarrow {}^{20}\text{Ne} + {}^{4}\text{He}$; ${}^{23}\text{Na} + \text{p}$; ${}^{23}\text{Mg} + \text{n}$; ${}^{24}\text{Mg} + \gamma$
 - $^{16}O + ^{16}O \rightarrow ^{24}Mg + 2 ^{4}He$; $^{28}Si + ^{4}He$; $^{31}P + p$; $^{31}S + n$; $^{32}S + \gamma$
- □ ... and silicon burning up to nuclei with A~60:
 - 28 Si + 4 He \leftrightarrow 32 S + γ
 - 32 S + 4 He \leftrightarrow 36 Ar + γ
 - ...
 - 52 Fe + 4 He \leftrightarrow 56 Ni + γ

Time Scales of Nucleosynthetic Reactions in a 1 Solar Mass Star

Reaction	Time
H burning	$6 \times 10^{9} \text{y}$
He burning	$0.5 \times 10^6 \text{ y}$
C burning	200 y
Ne burning	1 y
O burning	Few months
Si burning	Days

Death of Stars: White Dwarfs and Supernovas

- ☐ How the life of a star ends depends to a large extent on the mass of the star:
 - Stars with masses ~ M_{solar} do not reach the temperatures in their center to complete all burning stages. They extinguish and end as white dwarfs.
 - Stars with masses > 8 M_{solar} complete all stellar burning stages and can have an explosive end (supernova). The brightness of the star increases by a factor of 10^6-10^9 releasing $\sim 10^{51}$ ergs on a time scale of seconds. During the stellar explosion a lot of neutrons can be released leading to (n, γ)-reactions on iron-seed nuclei in the core.

s-process: Buildup of A>60 nuclei by slow n-capture

- □ ⁵⁶Fe+n→⁵⁷Fe(stable)+ γ ; ⁵⁷Fe+n→⁵⁸Fe(stable)+ γ ; ⁵⁸Fe+n→⁵⁹Fe(t_½=44.5d)+ γ ; ⁵⁹Fe(β-)⁵⁹Co(stable)...
- \Box The s-process terminates at ²⁰⁹Bi: ²⁰⁹Bi(n, γ)²¹⁰Bi(β⁻)²¹⁰Po(α)²⁰⁶Pb(n, γ)(n, γ)(n, γ)²⁰⁹Pb(β⁻) ²⁰⁹Bi

r-process: Buildup of A>60 nuclei by rapid n-capture

Neutron-capture paths for the s-process and the r-process are shown in the (N, Z)-plane. Both paths start with the iron-peak nuclei as seeds (mainly ⁵⁶Fe). The s-process follows a path along the stability line and terminates finally above ²⁰⁹Bi via α -decay (Cla67). The r-process drives the nuclear matter far to the neutron-rich side of the stability line, and the neutron capture flows upward in the (N, Z)-plane until β -delayed fission and neutron-induced fission occur (Thi83). The r-process path shown was computed (See65) for the conditions $T_9 = 1.0$ and $N_n = 10^{24}$ neutrons cm⁻³.

Other Processes that can synthesize Elements

p-process:

- Consists of a series of photonuclear reactions (γ,p) , (γ,α) , (γ,n) on seed nuclei from the s- or r-process.
- Leads to the synthesis of some proton-rich nuclei with 70 < A < 200.
- Contribution to the abundances of most elements is very small, but there are some nuclei (190Pt, 168Yb) that seem to have been exclusively made by it.

□ rp-process:

- Rapid proton capture process that makes proton-rich nuclei with 7 < Z < 27 by (p, γ)-reactions and β ⁺-decays
- Creates p-rich nuclei like ²¹Na, ¹⁹Ne, and a small number of nuclei with A < 100.

□ v-nucleosynthesis:

- In a type II supernova the intense neutrino flux of all flavors that passes through the onion layers of the PNS can cause a transmutation of nuclei via (v, v')- and (v_e, e^-) -, $(vbar_e, e^+)$ -reactions on nuclei.
- Some rare isotopes that could be due to this process are ⁷Li, ¹¹B, ¹⁹F, ¹³⁸La, and ¹⁸⁰Ta.

□ vp-process:

- Occurs in supernovae when strong neutrino fluxes create proton-rich ejecta.
- In this process antineutrino absorptions produce neutrons that are immediately captured by proton rich nuclei.
- Nuclei with A > 64 can be produced, e.g., ^{92,94}Mo and ^{96,98}Ru.

Radionuclides in the Environment (1)

Stages of the evolution of the earth.			
Time before present	Stage		
5 · 10 ⁹ y	Solar nebula		
$4.6 \cdot 10^9 \text{y}$	Formation of the solar system		
4.5 ⋅ 10 ⁹ y	Formation of the earth, the moon and of meteorites		
$4.3 \cdot 10^9 \mathrm{y}$	First stages of the earth's crust, formation of the oldest minerals		
•	found on the earth, formation of hydrosphere and atmosphere		
$3.9 \cdot 10^9 \mathrm{y}$	End of major meteoritic impacts		
$3.8 \cdot 10^9 \text{y}$	Beginning of formation of rocks		
$(3.8-3.5) \cdot 10^9 \text{ y}$	Formation of oldest rocks		
$3.5 \cdot 10^9 \text{ y}$	First traces of life (stromatolites)		

Ratio of the activities of some long-lived radionuclides at the time of the birth of the earth to those present.

Radionuclide	Activity ratio A/A_0	
⁴⁰ K	11.4	
⁸⁷ Rb	1.07	
²³² Th	1.02	
^{235}U	84.1	
²³⁸ U	2.01	

Radionuclides from natural decay series

Decay series	Decay mode of the mother nuclide	Half-life of the mother nuclide [y]	Range of dating [y]	Application
²³⁸ U ²²⁶ Ra ²⁰⁶ Pb	α	$4.468 \cdot 10^9$	$10^6 - 10^{10}$	Minerals, geology, geochemistry
$^{235}U\dots^{207}$ Pb	$\alpha \text{ (sf: 3.7.} \\ 10^{-7}\%)$	$7.038 \cdot 10^8$	$10^6 - 10^{10}$	Minerals, geology, geochemistry
²³² Th ²⁰⁸ Pb	α	$1.405 \cdot 10^{10}$	$10^6 - 10^{10}$	Minerals, geology, geochemistry
²¹⁰ Pb ²⁰⁶ Pb	eta^-	22.3	20–150	Ice, exchange with the atmosphere

Radionuclides in the Environment (2)

Cosmogenic radionuclides

Radio- nuclide	Production	Decay mode and half-life [y]	Production rate [atoms per m ² per y]	Range of dating [y]	Application
³ H (T)	¹⁴ N(n, t) ¹² C	β^- , 12.323	$\approx 1.3 \cdot 10^{11}$	0.5-80	Water, ice
¹⁴ C	¹⁴ N(n, p) ¹⁴ C	β^- , 5730	$\approx 7 \cdot 10^{11}$	$2.5 \cdot 10^2 - 4 \cdot 10^4$	Archaeology, climatology, geology (carbon, wood, tissue, bones, carbonates)
¹⁰ Be	Interaction of p and n with ¹⁴ N and ¹⁶ O	$\beta^-, 1.6 \cdot 10^6$	$\approx 1.3 \cdot 10^{10}$	$7 \cdot 10^4 - 10^7$	Sediments, glacial ice, meteorites
²⁶ A1	Interaction of cosmic rays with ⁴⁰ Ar	$\beta^+, 7.16 \cdot 10^5$	$\approx 4.8 \cdot 10^7$	$5\cdot 10^4 - 5\cdot 10^6$	Sediments, meteorites
³² Si	Interaction of cosmic rays with ⁴⁰ Ar	β^- , 172	$\approx 5.10^7$	$10-10^3$	Hydrology, ice
³⁶ Cl	Interaction of cosmic rays with ⁴⁰ Ar	$\beta^-, 3.0 \cdot 10^5$	$(4.5-6.5) \cdot 10^8$	$3\cdot10^4-2\cdot10^6$	Hydrology, water, glacial ice
³⁹ Ar	Interaction of cosmic rays with ⁴⁰ Ar	$\beta^-, 269$	$\approx 4.2 \cdot 10^{11}$	$10^2 - 10^4$	_

Radionuclides in the Environment (3)

Terrestrial radionuclides

Nuclide pair	Decay mode of the mother nuclide	Half-life of the mother nuclide [y]	Range of dating [y]	Application
40 K/ 40 Ar	β^{-} (89%) $\varepsilon + \beta^{+}$ (11%)	$1.28 \cdot 10^9$	$10^3 - 10^{10}$	Minerals
⁸⁷ Rb/ ⁸⁷ Sr	β^-	$4.8 \cdot 10^{10}$	$8 \cdot 10^6 - 3 \cdot 10^9$	Minerals, geochronology,
147 Sm/ 143 Nd	α	$1.06 \cdot 10^{11}$	$10^8 - 10^{10}$	geochemistry Minerals, geochronology,
¹⁷⁶ Lu/ ¹⁷⁶ Hf	eta^- (97%) $arepsilon$ (3%)	$3.8 \cdot 10^{10}$	$10^7 - 10^9$	geochemistry Geochemistry
¹⁸⁷ Re/ ¹⁸⁷ Os	β^-	$5\cdot 10^{10}$	$10^6 - 10^{10}$	Minerals

Summary

- Stars are Cauldrons in the Cosmos.
- The atomic abundances of the elements/isotopes in the solar system can largely be explained by astrophysical processes:
 - Big Bang Nucleosynthesis
 - Stellar burning phases
 - Explosive burning (s- and p-process)
- ☐ The radionuclides found in the lithosphere, hydrosphere and atmosphere are largely leftovers (decay-products) from supernova explosions.
- ☐ We consist of "star-dust".
- Radionuclides are a part of nature!

Literature / WWW-reference

- □ C.E. Rolfs and W.S. Rodney, "Cauldrons in the Cosmos", Chicago University Press (1988)
- W. Loveland, D.J. Morrissey, G.T. Seaborg, "Modern Nuclear Chemistry", WILEY (2006)
- □ K.H. Lieser, "Nuclear and Radiochemistry", WILEY-VCH (2nd edition, 2001), Chapter 15